Search results for " k–means"

showing 1 items of 1 documents

Distance-constrained data clustering by combined k-means algorithms and opinion dynamics filters

2014

Data clustering algorithms represent mechanisms for partitioning huge arrays of multidimensional data into groups with small in–group and large out–group distances. Most of the existing algorithms fail when a lower bound for the distance among cluster centroids is specified, while this type of constraint can be of help in obtaining a better clustering. Traditional approaches require that the desired number of clusters are specified a priori, which requires either a subjective decision or global meta–information knowledge that is not easily obtainable. In this paper, an extension of the standard data clustering problem is addressed, including additional constraints on the cluster centroid di…

Fuzzy clusteringCorrelation clusteringSingle-linkage clusteringConstrained clusteringcomputer.software_genreDetermining the number of clusters in a data setSettore ING-INF/04 - AutomaticaData clustering k–means Opinion dynamics Hegelsmann–Krause modelCURE data clustering algorithmData miningCluster analysisAlgorithmcomputerk-medians clusteringMathematics22nd Mediterranean Conference on Control and Automation
researchProduct